256 research outputs found

    Electric Field Effect in Multilayer Cr2Ge2Te6: a Ferromagnetic Two-Dimensional Material

    Full text link
    The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material, a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.Comment: To appear in 2D Material

    Detecting cyberattacks in industrial control systems using online learning algorithms

    Get PDF
    Industrial control systems are critical to the operation of industrial facilities, especially for critical infrastructures, such as refineries, power grids, and transportation systems. Similar to other information systems, a significant threat to industrial control systems is the attack from cyberspace---the offensive maneuvers launched by "anonymous" in the digital world that target computer-based assets with the goal of compromising a system's functions or probing for information. Owing to the importance of industrial control systems, and the possibly devastating consequences of being attacked, significant endeavors have been attempted to secure industrial control systems from cyberattacks. Among them are intrusion detection systems that serve as the first line of defense by monitoring and reporting potentially malicious activities. Classical machine-learning-based intrusion detection methods usually generate prediction models by learning modest-sized training samples all at once. Such approach is not always applicable to industrial control systems, as industrial control systems must process continuous control commands with limited computational resources in a nonstop way. To satisfy such requirements, we propose using online learning to learn prediction models from the controlling data stream. We introduce several state-of-the-art online learning algorithms categorically, and illustrate their efficacies on two typically used testbeds---power system and gas pipeline. Further, we explore a new cost-sensitive online learning algorithm to solve the class-imbalance problem that is pervasive in industrial intrusion detection systems. Our experimental results indicate that the proposed algorithm can achieve an overall improvement in the detection rate of cyberattacks in industrial control systems

    Circular RNA circNOL10 Inhibits Lung Cancer Development by Promoting SCLM1-Mediated Transcriptional Regulation of the Humanin Polypeptide Family

    Get PDF
    circNOL10 is a circular RNA expressed at low levels in lung cancer, though its functions in lung cancer remain unknown. Here, the function and molecular mechanism of circNOL10 in lung cancer development are investigated using in vitro and in vivo studies, and it is shown that circNOL10 significantly inhibits the development of lung cancer and that circNOL10 expression is co‐regulated by methylation of its parental gene Pre‐NOL10 and by splicing factor epithelial splicing regulatory protein 1 (ESRP1). circNOL10 promotes the expression of transcription factor sex comb on midleg‐like 1 (SCML1) by inhibiting transcription factor ubiquitination and thus also affects regulation of the humanin (HN) polypeptide family by SCML1. circNOL10 also affects mitochondrial function through regulating the humanin polypeptide family and affecting multiple signaling pathways, ultimately inhibiting cell proliferation and cell cycle progression, and promoting the apoptosis of lung cancer cells, thereby inhibiting lung cancer development. This study investigates the functions and molecular mechanisms of circNOL10 in the development of lung cancer and reveals its involvement in the transcriptional regulation of the HN polypeptide family by SCML1. The results also demonstrate the inhibitory effect of HN on lung cancer cells growth. These findings may identify novel targets for the molecular therapy of lung cancer

    Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression

    Get PDF
    Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage

    High-resolution face swapping via latent semantics disentanglement

    Get PDF
    We present a novel high-resolution face swapping method using the inherent prior knowledge of a pre-trained GAN model. Although previous research can leverage generative priors to produce high-resolution results, their quality can suffer from the entangled semantics of the latent space. We explicitly disentangle the latent semantics by utilizing the progressive nature of the generator, deriving structure attributes from the shallow layers and appearance attributes from the deeper ones. Identity and pose information within the structure attributes are further separated by introducing a landmark-driven structure transfer latent direction. The disentangled latent code produces rich generative features that incorporate feature blending to produce a plausible swapping result. We further extend our method to video face swapping by enforcing two spatio-temporal constraints on the latent space and the image space. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art image/video face swapping methods in terms of hallucination quality and consistency. Code can be found at: https://github.com/cnnlstm/FSLSD_HiRes
    corecore